Math Spotting in Technical Documents Using Handwritten Queries

Li Yu and Richard Zanibbi Document and Pattern Recognition Lab Rochester Institute of Technology, NY, USA Ixy1783@rit.edu, rlaz@cs.rit.edu

Math spotting

- OCR (optical character recognition) avoided
- Structure feature & Visual feature

Document image and query image

This file is prepared by running latex A.tex and cutting the pictures out of the resulting preview. Relevant parts x + y de are reproduced under each of the pictures. Here are some s Other examples include: $x + y = \frac{x}{x+y}$. So 2 bols have an explanatory text. $\int_a^b f(x) dx$, $\int_a^b f(x) dx$, This text is found in the latex code, mostly stating that they are parts of some spacial setup and cannot be used in standard LaTeX.

Document image

X-Y cutting

X-Y cut and X-Y tree

Page

Sub-tree matching

- What if we can find a matched sub-tree in the page tree?
- What we want? Speed & Accuracy
- Problems?
 Inexact matching

X-Y tree for query

X-Y tree for page

Noise and "Bad Division"

Cutting in Query

of a curvature estimate at each point is analogous to the DOS methods; the angle of curvature at point p_i is given by

	i - m/2		i+m/2+s	
$\theta_i =$	\sum	c_j –	$-\Sigma$	cj.
j	=i-s-m/2	± 1	i+m/2	H 1

For handprinted characters, the 'angle accumulation algorithm' of Lee et al. [9] uses differential chain code values as a measure of local change in curva-

Bad Division

Cutting in Page

- Avoid noise
- Control the way in which regions are cut
- Rectangles whose size smaller than thresholds will be ignored

Horizontal Projection

- Dominant height/width of characters
- Ch = Mode(h1,h2,...hn), where hn represents the heights of lines in one page
- W_h = Mode(W₁,W₂,...W_n), where W_n represents the widths of blank spaces in one line
- Scaled linearly based on the current region's height and width

Equivalency Class

- Two trees have same code (equivalence class number) if and only if they are isomorphic
- Bottom-up algorithm with linear time in the size of the trees

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms. Addison Wesley, Reading, Mass, 1974.

Ranking by Equivalency Class

Ж¤Ү	tree	e tor
p a g	eim	ı a g e

Ranking by Equivalency Class

Page

Ranking by Equivalency Class

Other Rankings

- Ranking by Number of Nodes:
 - Divide the page nodes into bins based on their size.
 - Start with the size of the query root.
 - Search for the page nodes in decreasing size order.
- <u>Ranking by both equivalence class number and number of nodes:</u>
 - Generate the equivalence class number for both query and page.
 - Start with the query root and by decreasing order.
 - Find all the exact sub-matches in the page tree.

Visual Feature

Distance =
$$\sum_{i=1}^{9} \frac{(Q_i - P_i)^2}{P_i}$$

Where Qi and Pi represents the sum of pixel intensity in the sub-region in query and candidate respectively

- Dividing the region into nine sub-regions and computing sum of pixel intensity respectively
- Ranking the candidates by decreasing visual similarity

Problems and Future work

• The situation where the target is "scattered" in the page.

• <u>q03vp03.htm</u>

Problems and Future work

Different Rankings

More visual features && comparison

Document image indexing

Thanks

Question?